Micromechanical voltage reference using the pull-in of a beam
نویسندگان
چکیده
The pull-in voltage of a single-side anchored freestanding beam, under lateral deflection, has been investigated for application as a dc voltage reference. Two sets of electrodes, alongside the tip, are used for parallel-plate type of electrostatic actuation of the 200 m long beam in the plane of the wafer. Another set of buried electrodes is aligned with the plate electrode at the free-standing tip and is used as a differential capacitor for the simultaneous detection of the displacement, with the purpose to determine the stability border and thus the pull-in voltage. The single-end clamping ensures that the pull-in voltage is insensitive to technology-induced stresses. A two-dimensional (2–D) energybased analytical model for the static pull-in is compared with measurements. Bifurcation diagrams are computed numerically, based on a local continuation method. Devices have been designed and fabricated in an epi-poly process. Measurements are in agreement with modeling and confirm a pull-in voltage in the 9.1–9.5 V range. Reproducibility is limited by hysteresis and charging of the dielectric layer in between the electrodes. The device can be operated in feedback or as a seesaw, by using the two sets of electrodes.
منابع مشابه
Estimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation artificial neural network
The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...
متن کاملEstimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation artificial neural network
The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...
متن کاملStability of a micromechanical pull-in voltage reference
The reproducibility over temperature and time of the pull-in voltage of micromechanical structures has been analyzed and verified using fabricated devices in silicon. The pull-in structures are intended for use as an on-chip voltage reference. Microbeams of 100m length, 3m width, and 11m thickness are electrostatically actuated with a very reproducible pull-in voltage at 9.1 V. Devices demonstr...
متن کاملCrack Influences on the Static and Dynamic Characteristic of a Micro-Beam Subjected to Electro Statically Loading
In the present work the pull-in voltage of a micro cracked cantilever beam subjected to nonlinear electrostatic pressure was studied. Two mathematical models were employed for modeling the problem: a lumped mass model and a classical beam model. The effect of crack in the lumped mass model is the reduction of the effective stiffness of the beam and in the beam model; the crack is modeled as a m...
متن کاملPull-In Instability and Vibrations of a Beam Micro-Gyroscope
Gyroscopes are used as rotation rate sensors. Conventional gyroscopes are heavy and bulky, which creates important problems regarding their usage in different applications. Micro-gyroscopes have solved these problems due to their small size. The beam micro-gyroscope is one of the popular types of inertial sensors. Their small dimensions and low energy consumption are key reasons for their popul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Instrumentation and Measurement
دوره 50 شماره
صفحات -
تاریخ انتشار 2001